МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ОСНОВНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 38 ГОРОДА НОВОШАХТИНСКА

«Согласовано»
Заместитель директора по УВР
____/Ермакова Т.В./
«30» августа 2021г.

РАБОЧАЯ ПРОГРАММА

По	Информатике	
	(учебный предмет, курс)	
уровень обще	го образования (класс)	
	ное общее, 8 класс	
(начальное общее,	основное общее, среднее общее с указанием класса)	
учитель	Писек Т.И, высшая	
	(ФИО, категория)	

Пояснительная записка

Рабочая программа по информатике разработана:

- ▶ в соответствии с Федеральным государственным образовательным стандартом основного общего образования (утвержден приказом Министерства образования и науки Российской Федерации от 17.12.2010г. № 1897);
- на основе основной образовательной программы основного общего образования МБОУ ООШ № 38 города Новошахтинска;
- → на основе авторской (примерной) программы по информатике авторы: Босова Л.Л.;
- учебного плана МБОУ ООШ № 38 г. Новошахтинска на 2021-2022 учебный год;
- ▶ положения ОУ «О рабочих программах».

Программа обеспечивается <u>учебно-методическим комплектом</u>, который включает учебники, рабочие тетради и методические рекомендации для учителя.

- 1. Учебник Информатика 8 класс. Л.Л.Босова. изд. Бином
- 2. Рабочие тетради. Информатика 8 класс. Л.Л.Босова. изд. Бином
- 3. Самостоятельные и контрольные работы. 8 класс .Л.Л.Босова. изд. Бином

Цели и задачи программы

- формирование общеучебных умений и навыков на основе средств и методов информатики и ИКТ, в том числе овладение умениями работать с различными видами информации, самостоятельно планировать и осуществлять индивидуальную и коллективную информационную деятельность, представлять и оценивать ее результаты;
- ▶ пропедевтическое (предварительное, вводное, ознакомительное) изучение понятий основного курса школьной информатики, обеспечивающее целенаправленное формирование общеучебных понятий, таких как «объект», «система», «модель», «алгоритм» и др.;
- **р**азвитие познавательных, интеллектуальных и творческих способностей учащихся.

Для достижения комплекса поставленных целей в процессе изучения информатики и ИКТ необходимо решить следующие задачи:

- создать условия для осознанного использования учащимися при изучении школьных дисциплин таких общепредметных понятий как «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- ▶ сформировать у учащихсяумения организации собственной учебной деятельности, включающими: целеполагание как постановку учебной задачи на основе соотнесения того, что уже известно, и того, что требуется установить;
 - планирование определение последовательности промежуточных целей с учетом конечного результата, разбиение задачи на подзадачи, разработка последовательности и структуры действий, необходимых для достижения

цели при помощи фиксированного набора средств; прогнозирование - предвосхищение результата; контроль - интерпретация полученного результата, его соотнесение с имеющимися данными с целью установления соответствия или несоответствия (обнаружения ошибки); коррекция - внесение необходимых дополнений и корректив в план действий в случае обнаружения ошибки; оценка - осознание учащимся того, насколько качественно им решена учебно-познавательная задача;

- > сформировать у учащихся умения навыки информационного моделирования как основного метода приобретения знаний: умение объект преобразовывать чувственной формы пространственно-ИЗ графическую или знаково-символическую умение строить модель; разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- сформировать у учащихся основные универсальные умения информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации,применение методов информационного поиска; структурирование и
- визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- сформировать у учащихся широкий спектр умений и навыков: использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации; овладения способами и методами освоения новых инструментальных средств;
- сформировать у учащихся основные умения и навыки самостоятельной работы, первичные умения и навыки исследовательской деятельности, принятия решений и управления объектами с помощью составленных для них алгоритмов;
- сформировать у учащихся умения и навыки продуктивного взаимодействия и сотрудничества со сверстниками и взрослыми: умения правильно, четко и однозначно формулировать мысль в понятной собеседнику форме; умения работы в группе; умения выступать перед аудиторией, представляя ей результаты своей работы с помощью средств ИКТ.

Планируемые результаты

Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
- понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации;
- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;

способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими определять понятия, умениями: обобшения. классифицировать, создавать устанавливать аналогии, выбирать основания классификации, самостоятельно критерии ДЛЯ причинно-следственные устанавливать связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных

способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;

- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- ИКТ-компетентность широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиасообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать конкретного формирование алгоритм ДЛЯ исполнителя; знаний конструкциях, операциях; алгоритмических логических значениях И основными знакомство одним ИЗ языков программирования алгоритмическими структурами — линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;

• формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Цели программы

- формирование общеучебных умений и навыков на основе средств и методов информатики и ИКТ, в том числе овладение умениями работать с различными видами информации, самостоятельно планировать и осуществлять индивидуальную и коллективную информационную деятельность, представлять и оценивать ее результаты;
- ропедевтическое (предварительное, вводное, ознакомительное) изучение понятий основного курса школьной информатики, обеспечивающее целенаправленное формирование общеучебных понятий, таких как «объект», «система», «модель», «алгоритм» и др.;
- **р** воспитание ответственного и избирательного отношения к информации; развитие познавательных, интеллектуальных и творческих способностей учащихся.

Для достижения комплекса поставленных целей в процессе изучения информатики и ИКТ необходимо решить следующие задачи:

- создать условия для осознанного использования учащимися при изучении школьных дисциплин таких общепредметных понятий как «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- > сформировать у учащихсяумения организации собственной учебной деятельности, включающими: целеполагание как постановку учебной задачи на основе соотнесения того, что уже известно, и того, что требуется установить; планирование - определение последовательности промежуточных целей с учетом конечного результата, разбиение задачи на подзадачи, разработка последовательности и структуры действий, необходимых для достижения цели при помощи фиксированного набора средств; прогнозирование -- интерпретация предвосхищение результата; контроль полученного результата, его соотнесение с имеющимися данными с целью установления соответствия или несоответствия (обнаружения ошибки); коррекция внесение необходимых дополнений и корректив в план действий в случае обнаружения ошибки; оценка - осознание учащимся того, насколько качественно им решена учебно-познавательная задача;
- > сформировать у учащихся умения навыки информационного моделирования как основного приобретения знаний: умение метода преобразовывать объект И3 чувственной формы пространственнографическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- > сформировать у учащихся основные универсальные умения

- информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации,применение методов информационного поиска; структурирование и
- визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- сформировать у учащихся широкий спектр умений и навыков: использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации; овладения способами и методами освоения новых инструментальных средств;
- ▶ сформировать у учащихся основные умения и навыки самостоятельной работы, первичные умения и навыки исследовательской деятельности, принятия решений и управления объектами с помощью составленных для них алгоритмов;
- сформировать у учащихся умения и навыки продуктивного взаимодействия и сотрудничества со сверстниками и взрослыми: умения правильно, четко и однозначно формулировать мысль в понятной собеседнику форме; умения работы в группе; умения выступать перед аудиторией, представляя ей результаты своей работы с помощью средств ИКТ.

В результате изучения учебного предмета «Информатика» в 8 классе ученик научится:

- понимать сущность понятий «система счисления», «позиционная система счисления», «алфавит системы счисления», «основание системы счисления»;
- **>** записывать в двоичной системе целые числа от 0 до 1024;
- переводить заданное натуральное число из двоичной системы счисления в десятичную;
- > сравнивать натуральные числа в двоичной записи;
- > складывать небольшие числа, записанные в двоичной системе счисления;
- понимать сущность понятия «высказывание», сущность операций И (конъюнкция), ИЛИ (дизъюнкция), НЕ (отрицание);
- эаписывать логические выражения, составленные с помощью операций И, ИЛИ, НЕ и скобок, определять истинность такого составного высказывания, если известны значения истинности входящих в него элементарных высказываний;
- ▶ понимать сущность понятий «исполнитель», «алгоритм», «программа»; понимать разницу между употреблением терминов «исполнитель», «алгоритм», «программа» в обыденной речи и в информатике;
- понимать сущность понятий «формальный исполнитель», «среда исполнителя», «система команд исполнителя»; знать об ограничениях, накладываемых средой исполнителя и его системой команд на круг задач, решаемых исполнителем;
- ▶ выражать алгоритм решения задачи различными способами (словесным, графическим, в том числе и в виде блок-схемы, с помощью формальных языков и др.);
- > определять результат выполнения заданного алгоритма или его фрагмента;

- ➤ выполнять без использования компьютера («вручную») несложные алгоритмы управления исполнителями Робот, Черепаха, Чертежник и др.;
- ▶ выполнять без использования компьютера («вручную») несложные алгоритмы обработки числовых данных, записанные на конкретном язык программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);
- составлять несложные алгоритмы управления исполнителями Робот, Черепаха,
 Чертежник и др.; выполнять эти программы на компьютере;
- использовать величины (переменные) различных типов, а также выражения, составленные из этих величин; использовать оператор присваивания;
- ➤ анализировать предложенную программу, например, определять, какие результаты возможны при заданном множестве исходных значений;
- использовать при разработке алгоритмов логические значения, операции и выражения с ними;
- эаписывать на изучаемом языке программирования (Паскаль, школьный алгоритмический язык) арифметические и логические выражения и вычислять их значения;
- эаписывать на изучаемом языке программирования (Паскаль, школьный алгоритмический язык) алгоритмы решения задач анализа данных: нахождение минимального и максимального числа из двух, трех, четырех данных чисел; нахождение всех корней заданного квадратного уравнения;
- использовать простейшие приемы диалоговой отладки программ.

В результате изучения учебного предмета «Информатика» в 8 классе ученик получит возможность:

- научиться записывать целые числа от 0 до 1024 в восьмеричной и шестнадцатеричной системах счисления; осуществлять перевод небольших целых восьмеричных и шестнадцатеричных чисел в десятичную систему счисления;
- овладеть двоичной арифметикой;
- научиться строить таблицы истинности для логических выражений;
- научиться решать логические задачи с использованием таблиц истинности;
- познакомиться с законами алгебры логики;
- научиться решать логические задачи путем составления логических выражений и их преобразования с использованием основных свойств логических операций;
- > познакомиться с логическими элементами;
- научиться анализировать предлагаемые последовательности команд на предмет наличия у них таких свойств алгоритма, как дискретность, детерминированность, понятность, результативность, массовость;
- оперировать алгоритмическими конструкциями «следование», «ветвление», «цикл» (подбирать алгоритмическую конструкцию, соответствующую той или иной ситуации; переходить от записи алгоритмической конструкции на алгоритмическом языке к блок-схеме и обратно);
- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;

- составлять все возможные алгоритмы фиксированной длины для формального исполнителя с заданной системой команд;
- определять количество линейных алгоритмов, обеспечивающих решение поставленной задачи, которые могут быть составлены для формального исполнителя с заданной системой команд;
- подсчитывать количество тех или иных символов в цепочке символов, являющейся результатом работы алгоритма;
- > по данному алгоритму определять, для решения какой задачи он предназначен;
- > познакомиться с использованием в программах строковых величин;
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции;
- » познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами.

Содержание учебного предмета

Организация учебной деятельности учащихся строится на основе системнодеятельностного подхода, который предполагает:

- ориентацию на достижение цели и основного результата образования развитие личности обучающегося на основе освоения универсальных учебных действий, познания и освоения мира;
- > опору на современные образовательные технологии деятельностного типа:
- > проблемно-диалогическую технологию,
- > технологию мини-исследования,
- > технологию организации проектной деятельности,
- > технологию оценивания образовательных достижений (учебных успехов).

Формы организации образовательного процесса:

- индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные и тд.
- ➤ Комбинированный урок, урок игра, урок беседа, урок путешествие, урок практические занятия, урок с демонстрацией объектов или изображений, самостоятельная работа, урок математический тренажёр.

Технологии обучения:

- > технология развивающего обучения;
- > технология проблемного обучения;
- игровая технология;
- > здоровьесберегающие технологии;
- > проектная технология;
- > технология разноуровнего обучения;
- > технология опорных конспектов;
- > информационные технологии.

Технологии, основанные на активизации и интенсификации деятельности обучающихся; групповые технологии разных видов: групповой опрос, диспут, опыт, урок-практикум, урок-отчёт или презентация проекта и т.д.

Проектная деятельность обеспечивает развитие познавательных навыков, умений: самостоятельно конструировать свои знания, ориентироваться в информационном пространстве, самостоятельно планировать свою деятельность, самостоятельно приобретать новые знания для решения новых познавательных и практических задач; способствует практической реализации познавательной деятельности ребенка и развивает его индивидуальные интересы.

Проекты выполняются учащимися на добровольной основе.

Содержание программы по информатике 8 класс

Ведение 1 ч

Математические основы информатики (12 ч)

Общие сведения о системах счисления. Понятие о непозиционных и позиционных системах счисления. Знакомство с двоичной, восьмеричной и шестнадцатеричной системами счисления, запись в них целых десятичных чисел от 0 до 1024. Перевод небольших целых чисел из двоичной системы счисления в десятичную. Двоичная арифметика.

Компьютерное представление целых чисел. Представление вещественных чисел.

Высказывания. Логические операции. Логические выражения. Построение таблиц истинности для логических выражений. Свойства логических операций. Решение логических задач. Логические элементы.

Основы алгоритмизации (10 ч)

Понятие исполнителя. Неформальные и формальные исполнители. Учебные исполнители (Робот, Чертёжник, Черепаха, Кузнечик, Водолей, Удвоитель и др.) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд.

Понятие алгоритма как формального описания последовательности действий исполнителя при заданных начальных данных. Свойства алгоритмов. Способы записи алгоритмов.

Алгоритмический язык – формальный язык для записи алгоритмов. Программа – запись алгоритма на алгоритмическом языке. Непосредственное и программное управление исполнителем.

Линейные программы. Алгоритмические конструкции, связанные с проверкой условий: ветвление и повторение. Разработка алгоритмов: разбиение задачи на подзадачи, понятие вспомогательного алгоритма.

Понятие простой величины. Типы величин: целые, вещественные, символьные, строковые, логические. Переменные и константы. Знакомство с табличными величинами (массивами). Алгоритм работы с величинами — план целенаправленных действий по проведению вычислений при заданных начальных данных с использованием промежуточных результатов.

Управление, управляющая и управляемая системы, прямая и обратная связь. Управление в живой природе, обществе и технике.

Начала программирования (10 ч)

Язык программирования. Основные правила одного из процедурных языков программирования (Паскаль, школьный алгоритмический язык и др.): правила представления данных; правила записи основных операторов (ввод, вывод, присваивание, ветвление, цикл) и вызова вспомогательных алгоритмов; правила записи программы.

Этапы решения задачи на компьютере: моделирование – разработка алгоритма – кодирование – отладка – тестирование.

Решение задач по разработке и выполнению программ в выбранной среде программирования.

Количество учебных часов.

Рабочая программа в 8 классе рассчитана на 1 час в неделю на протяжении учебного года, то есть 32 часа в год

Срок реализации учебной программы – один учебный год.

Учебно-тематический план

No	Название темы	Количество часов
		общее
1	Введение	1
2	Математические основы	12
	информатики	
3	Основы алгоритмизации	10
4	Начала программирования	10
	Итого:	33

Календарно-тематический план учебного предмета Информатика 8 класс 2021-2022 уч.год

Номер урока	Тема урока	Д.з.	Дата
1.	Цели изучения курса информатики и ИКТ. Техника	Введен	06.09
1.	безопасности и организация рабочего места.	ие	
Тема Математические основы информатики			
2.	Диагностическая контрольная работа		13.09
3.	Общие сведения о системах счисления. Двоичная	§1.1.	20.09
	система счисления.		
4.	Восьмеричная системы счисления. Компьютерные	§1.1.	27.09
	системы счисления		
5.	Правило перевода целых десятичных чисел в	§1.1.	04.10
	систему счисления с основанием q		
6.	Представление целых чисел	§1.2.	11.10
7	Представление вещественных чисел	§1.2	18.10
8.	Высказывание. Логические операции.	§1.3.	25.10
9.	Построение таблиц истинности	§1.3.	08.11
10.	Свойства логических операций.	§1.3.	15.11
11.	Решение логических задач	§1.3.	22.11
12.	Логические элементы	§1.3.	29.11

Номер урока	Тема урока	Д.з.	Дата
13.	Контрольная работа «Математические основы информатики». Тест		06.12
Тема	Основы алгоритмизации		
14.	Алгоритмы и исполнители	§2.1	13.12
15.	Способы записи алгоритмов	§2.2	20.12
16.	Объекты алгоритмов	§2.3	10.01
17.	Алгоритмическая конструкция следование	§2.4	17.01
18.	Алгоритмическая конструкция ветвление.	§3.4	24.01
19.	Неполная форма ветвления	§2.4	31.01
20.	Цикл с заданным условием продолжения работы	§2.4	07.02
21.	Цикл с заданным условием окончания работы		14.02
22.	Цикл с заданным числом повторений	§2.4	21.02
23.	Общие сведения о языке программирования Паскаль		28.02
Темя	Начала программирования		
24.	Организация ввода и вывода данных	§3.1	07.03
25.	Программирование линейных алгоритмов	§3.2	14.03
26.	Программирование разветвляющихся алгоритмов. Условный оператор.	§3.3	28.03
27.	Составной оператор. Многообразие способов записи ветвлений.	§3.4	04.04
28.	Программирование циклов с заданным условием продолжения работы, окончания работы.	§3.4	11.04
29.	Программирование циклов с заданным числом повторений	§3.5	18.04
30.	Административная контрольная работа за 4 четверть».	§3.5	25.04
31.	Программирование циклических алгоритмов.	§3.5	16.05
, , ,	I IIDOIDAMMIMIDODAMICO HIMAMI IOUNIM AMI OUMINIOD.	30.0	10.00